ADA PINPOINT TOPIC PACKS

(1)Vectors (13 Qns)(2)Vector Arithmetic (0 Qns)

40_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 57mins , Max = 50 Marks

Calculated Grade Boundaries:

Grade	Marks
4-	3
4	6 9
4+	9
5-	12
5	14
5+	17
6-	20
6	23 25
6+	25
7-	28
7	31 34 37
7+	34
4 4+ 5- 5 5+ 6- 6 6 6+ 7- 7 7 7+ 8- 8	37
8	39
8+ 9- 9	42
9-	45
9	48
9+	50

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

Question 1 (AO2): (No Calc) 32% of students got this right (3 marks)

15.

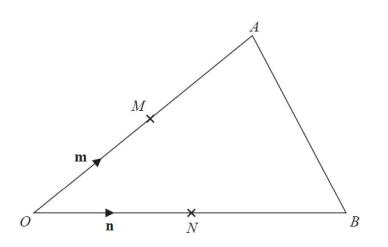


Diagram **NOT** accurately drawn

OAB is a triangle.M is the midpoint of OA.N is the midpoint of OB.

 $\overrightarrow{OM} = \mathbf{m}$

 $\overrightarrow{ON} = \mathbf{n}$

Show that *AB* is parallel to *MN*.

(Total 3 marks)

Question 2 (AO1): 31% of students got this right (4 marks)

17.

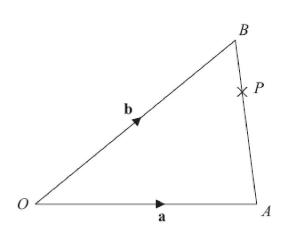


Diagram NOT accurately drawn

OAB is a triangle.

 $\overrightarrow{OA} = \mathbf{a}$ $\overrightarrow{OB} = \mathbf{b}$

(a) Find \overrightarrow{AB} in terms of **a** and **b**.

.....(1)

P is the point on *AB* such that AP : PB = 3 : 1

(b) Find \overrightarrow{OP} in terms of **a** and **b**. Give your answer in its simplest form.

(3)

(Total 4 marks)

Question 3 (AO2): 31% of students got this right (4 marks)

A a p b B B Diagram NOTaccurately drawn<math>B

OAB is a triangle.

 $\overrightarrow{OA} = \mathbf{a}$

18.

$$\overrightarrow{OB} = \mathbf{b}$$

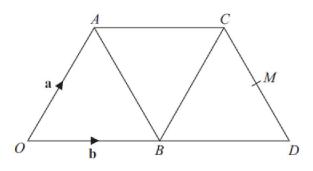
(a) Find the vector \overrightarrow{AB} in terms of **a** and **b**.

 $\overrightarrow{AB} = \dots$ (1)

P is the point on *AB* such that AP : PB = 3 : 2

(b) Show that
$$\overrightarrow{OP} = \frac{1}{5}(2\mathbf{a} + 3\mathbf{b})$$

(3)


(Total 4 marks)

18. *OACD* is a trapezium made from three equilateral triangles.

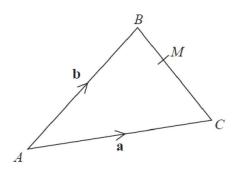
 $\overrightarrow{OA} = \mathbf{a}$

 $\overrightarrow{OB} = \mathbf{b}$

M is the midpoint of *CD*.

- (a) Write \overrightarrow{AB} in terms of **a** and **b**.
- (b) Show that \overrightarrow{OC} is parallel to \overrightarrow{BM} .

(1)


.....

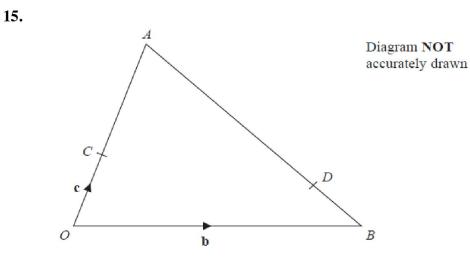
(4) (Total 5 marks)

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

Question 5 (AO2): (No Calc) 26% of students got this right (1 marks)

16 a

M is the point such that BM : MC is 1 : 2Here is Burt's method to find BM in terms of **a** and **b**.


$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$
$$= -\mathbf{b} + \mathbf{a}$$
$$= \mathbf{a} - \mathbf{b}$$
$$\overrightarrow{BM} = \frac{1}{2} \overrightarrow{BC}$$
$$= \frac{1}{2} (\mathbf{a} - \mathbf{b})$$

(a) Evaluate Burt's method.

.....

(1)

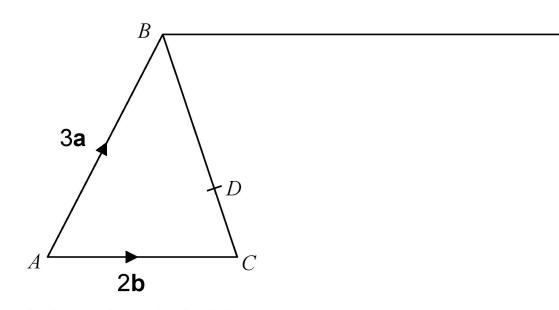
Question 6 (AO2): 18% of students got this right (4 marks)

In the diagram,

$$OB = \mathbf{b}$$
$$\overrightarrow{OC} = \mathbf{c}$$
$$\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OA}$$
$$\overrightarrow{BD} = \frac{1}{4} \overrightarrow{BA}$$

Find *CD* in terms of **b** and **c**.

Give your answer in its simplest form. You must show all your working.


.....

(Total 4 marks)

- E

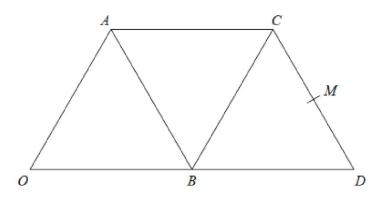
Question 7 (AO2): 17% of students got this right (4 marks)

19

The diagram shows triangle ABC.

 $Al \rightarrow 3a$

 $A \leftrightarrow 2\mathbf{b}$


$$B \rightarrow = 3AC \rightarrow$$

D is the point on BC such that BD : DC = 3 : 1

Prove that *ADE* is a straight line.

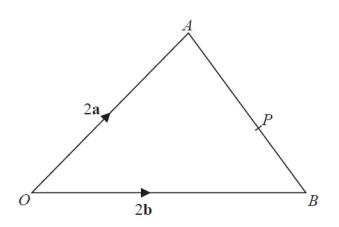
Question 8 (AO3): (No Calc) 13% of students got this right (3 marks)

20.

OACD is a trapezium and *OACB* is a parallelogram. *B* is the midpoint of *OD*. *M* is the midpoint of *CD*.

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

Given that $\overrightarrow{BM} = k \times \overrightarrow{OC}$ where k is a scalar,


use a vector method to find the value of k.

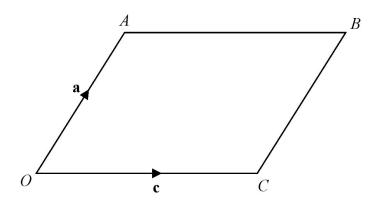
(Total for Question 20 is 3 marks)

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

Question 9 (AO3): 11% of students got this right (4 marks)

20

OAB is a triangle. *P* is the point on *AB* such that AP : PB = 5 : 3


 $\overrightarrow{OA} = 2\mathbf{a}$ $\overrightarrow{OB} = 2\mathbf{b}$

 $\overrightarrow{OP} = k(3\mathbf{a} + 5\mathbf{b})$ where *k* is a scalar quantity.

Find the value of *k*.

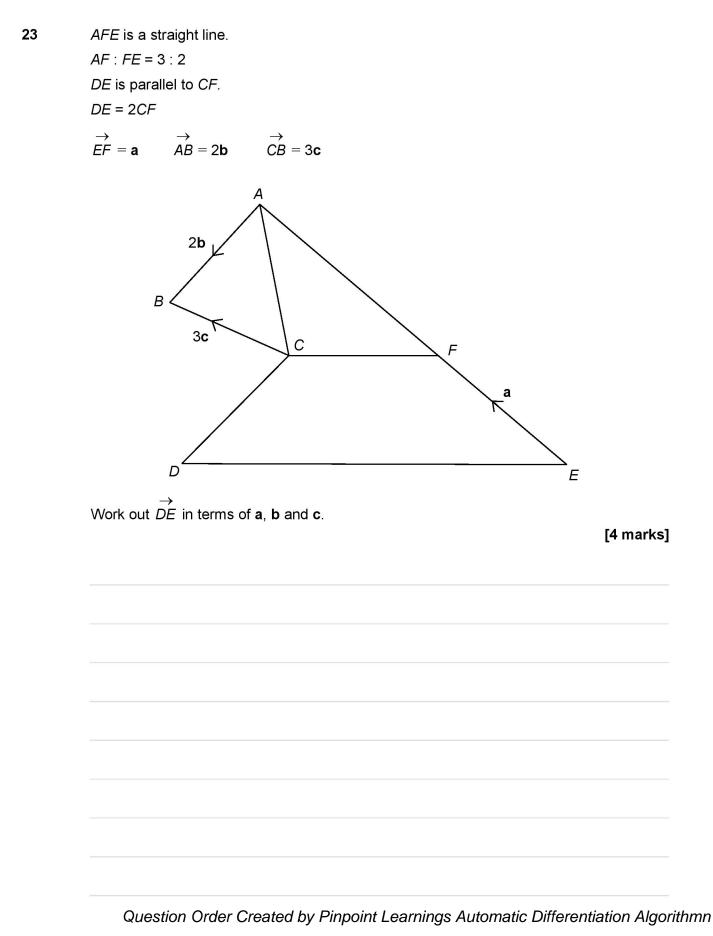
Question 10 (AO3): (No Calc) 8% of students got this right (4 marks)

19

OABC is a parallelogram.

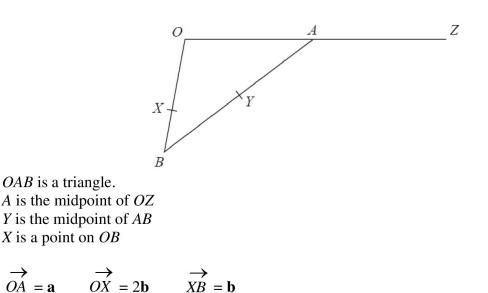
 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$

X is the midpoint of the line AC. OCD is a straight line so that OC : CD = k : 1


Given that
$$\overrightarrow{XD} = 3\mathbf{c} - \frac{1}{2}\mathbf{a}$$

find the value of k.

k =


(Total for Question 19 is 4 marks)

Question 11 (AO2): 8% of students got this right (4 marks)

Answer

Question 12 (AO3): 7% of students got this right (5 marks)

Prove that *XYZ* is a straight line.

21

(Total for Question 21 is 5 marks)

Question 13 (AO3): 7% of students got this right (5 marks)

*20

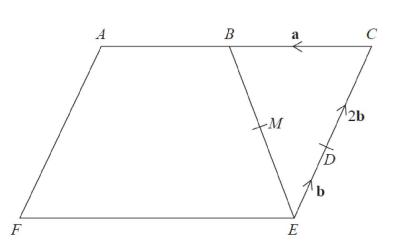
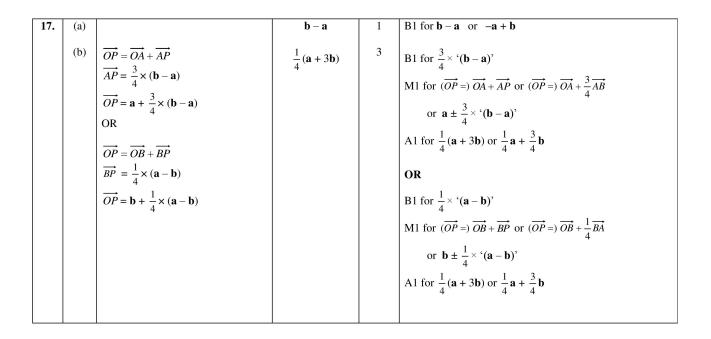


Diagram **NOT** accurately drawn

ACEF is a parallelogram. B is the midpoint of AC. M is the midpoint of BE. \rightarrow


 $CB = \mathbf{a}$ $\overrightarrow{ED} = \mathbf{b}$ $\overrightarrow{DC} = \mathbf{2b}$

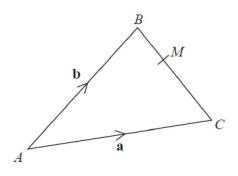
Show that AMD is a straight line.

Answers to Qn 1 (AO2): (No Calc) 32% of students got this right

15.	Proof	3	M1 for $\overrightarrow{MN} = \overrightarrow{MO} + \overrightarrow{ON} (= \mathbf{n} - \mathbf{m})$
			or $\overrightarrow{NM} = \overrightarrow{OM} + \overrightarrow{NO} (= \mathbf{m} - \mathbf{n})$
			or $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} (= 2\mathbf{n} - 2\mathbf{m})$ or $\overrightarrow{BA} = \overrightarrow{OA} + \overrightarrow{BO}$
			(= 2m - 2n)
			M1 for $\overrightarrow{MN} = \mathbf{n} - \mathbf{m}$ and $\overrightarrow{AB} = 2\mathbf{n} - 2\mathbf{m}$ oe
			C1 (dep on M1, M1) for fully correct proof, with $\overrightarrow{AB} = 2\overrightarrow{MN}$
			or \overrightarrow{AB} is a multiple of \overrightarrow{MN}
			[SC M1 for $\overline{MN} = 0.5\mathbf{n} - 0.5\mathbf{m}$ and $\overline{AB} = \mathbf{n} - \mathbf{m}$]
			C1 (dep on M1) for fully correct proof, with $\overrightarrow{AB} = 2\overrightarrow{MN}$
			or \overrightarrow{AB} is a multiple of of \overrightarrow{MN}]

Answers to Qn 2 (AO1): 31% of students got this right

Answers to Qn 3 (AO2): 31% of students got this right


Que	stion	Working	Answer	Mark	Notes
18.	(a)		b – a		B1 for $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$ oe
	stion (a) (b)	Working $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ $\overrightarrow{OP} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ $\overrightarrow{OP} = \frac{1}{5}(2\mathbf{a} + 3\mathbf{b})$	Answer b – a proof	Mark	Notes B1 for $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$ oe M1 for $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ oe or $\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP}$ oe M1 for $\overrightarrow{AP} = \frac{3}{5}(\mathbf{b} - \mathbf{a})$ oe or $\overrightarrow{BP} = \frac{2}{5}(\mathbf{a} - \mathbf{b})$ oe A1 for $\mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ or $\mathbf{b} + \frac{2}{5}(\mathbf{a} - \mathbf{b})$ oe leading to given answer with correct expansion of brackets seen
		Question Order	Created by Pi	npoint L	earnings Automatic Differentiation Algorithmn

Answers to Qn 4 (AO2): (No Calc) 27% of students got this right

Question		Working	Answer	Mark	x Notes		
	a)		b – a	1	B1		
	b)			4			
	0)		$\overrightarrow{BM} = \frac{1}{2} \overrightarrow{OC}$	4	B1 $\overrightarrow{OC} = \mathbf{a} + \mathbf{b}$		
			$\frac{1}{2}\overrightarrow{OC}$		M1 $\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{CM}$ oe		
			hence				
			parallel		or $\overrightarrow{BM} = \mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$		
					A1 $\frac{1}{2}$ (a + b)		
					C1 $\overrightarrow{BM} = \frac{1}{2} \overrightarrow{OC}$ hence parallel		
					2		
					rnings Automatic Differentiation Algorith		

Answers to Qn 5 (AO2): (No Calc) 26% of students got this right

16 a

M is the point such that BM : MC is 1 : 2Here is Burt's method to find BM in terms of **a** and **b**.

$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$
$$= -\mathbf{b} + \mathbf{a}$$
$$= \mathbf{a} - \mathbf{b}$$
$$\overrightarrow{BM} = \frac{1}{2} \overrightarrow{BC}$$
$$= \frac{1}{2} (\mathbf{a} - \mathbf{b})$$

(a) Evaluate Burt's method.

He treated M as a midpoint. 1+2 = 3 so M is $\frac{1}{3}$ along BC Instead he needed $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}$

(1)

Answers to Qn 6 (AO2): 18% of students got this right

Question	Working	Answer	Mark	Notes
15		3 b – c	4	M1 for $\overrightarrow{CD} = \overrightarrow{CO} + \overrightarrow{OB} + \overrightarrow{BD}$
		4		M1 (indep) for $\overrightarrow{CO} + \overrightarrow{OB} = -\mathbf{c} + \mathbf{b}$
				or $\overrightarrow{BA} = -\mathbf{b} + 3\mathbf{c}$
				M1 for $-c + b + \frac{1}{4}(-b + 3c)$
				A1 for $\frac{3\mathbf{b}-\mathbf{c}}{4}$
				4 OR
				M1 for $\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$
				M1 (indep) for $\overrightarrow{CA} = 2\mathbf{c}$ or $\overrightarrow{AB} = -3\mathbf{c} + \mathbf{b}$
				M1 (indep) for $CA = 2\mathbf{c}$ or $AB = -3\mathbf{c} + \mathbf{b}$ M1 for $2\mathbf{c} + \frac{3}{4}(-3\mathbf{c} + \mathbf{b})$
				A1 for $\frac{3\mathbf{b}-\mathbf{c}}{4}$
	Question Order Cre	ated by Pinp	oint Leai	nings Automatic Differentiation Algorithmn

Answers to Qn 7 (AO2): 17% of students got this right

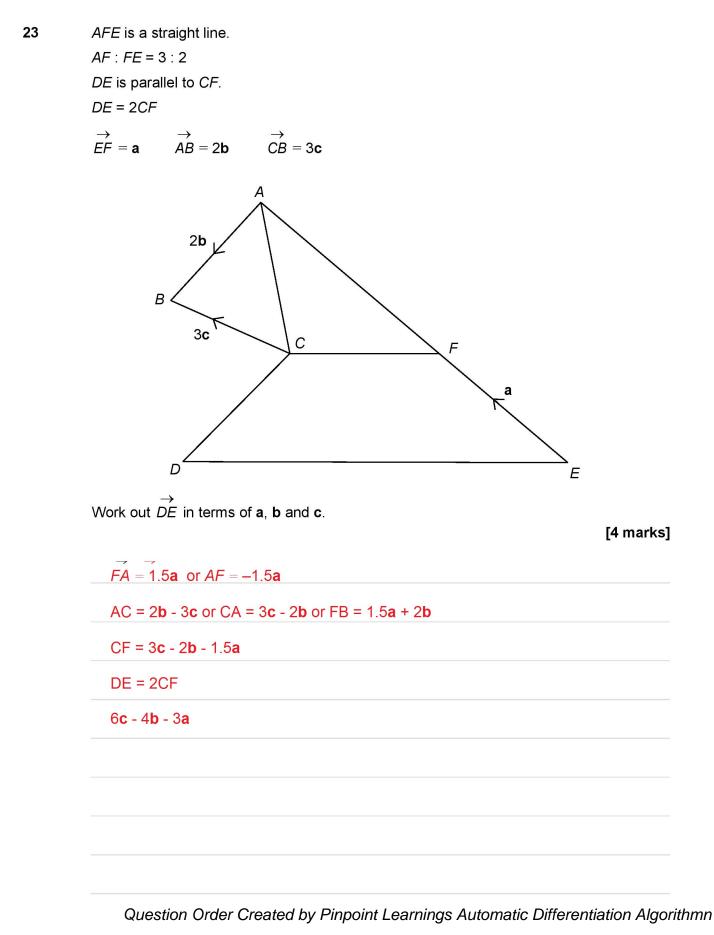
Question	Working	Answer	Mark	Notes
19		proof	B1	for $\overrightarrow{BC} = 2\mathbf{b} - 3\mathbf{a}$ or $\overrightarrow{CB} = 3\mathbf{a} - 2\mathbf{b}$ or $\overrightarrow{BE} = 6\mathbf{b}$
			M1	for a correct vector expression for \overrightarrow{AD} or \overrightarrow{DE} , or \overrightarrow{AE}
				e.g. $\overrightarrow{AD} = \overrightarrow{AB} + \frac{3}{4} \overrightarrow{BC}$ or \overrightarrow{AD}
				$= \overrightarrow{AC} + \frac{1}{4} \overrightarrow{CB} \text{ or } \overrightarrow{DE} = \frac{3}{4} \overrightarrow{CB} + \overrightarrow{BE}, \text{ or } \overrightarrow{AE} = \overrightarrow{AB} + 3 \overrightarrow{AC}$
			A1	for $\overrightarrow{AD} = \frac{3}{4}(2\mathbf{b} + \mathbf{a})$ and $\overrightarrow{DE} =$
				$\frac{9}{4}(2\mathbf{b} + \mathbf{a}) \text{ or } \overrightarrow{AE} = 3(2\mathbf{b} + \mathbf{a})$
				with either $\overrightarrow{AD} = \frac{3}{4}(2\mathbf{b} + \mathbf{a})$ or
				$\overrightarrow{DE} = \frac{9}{4} \left(2\mathbf{b} + \mathbf{a} \right)$
			C1	for a fully correct proof, eg \overrightarrow{DE} = $3 \overrightarrow{AD}$, so the vectors are parallel and have point <i>D</i> in common

Answers to Qn 8 (AO3): (No Calc) 13% of students got this right

20	0.5	M1	writes \overrightarrow{CD} as $-\mathbf{a} + \mathbf{b}$ or \overrightarrow{MD} as $\frac{1}{2}(-\mathbf{a} + \mathbf{b})$ oe
		M1	writes \overrightarrow{BM} as $\overrightarrow{BD} + \overrightarrow{DM}$ or $\mathbf{b} - \frac{1}{2}$ (" $-\mathbf{a} + \mathbf{b}$ ") or $\overrightarrow{BC} + \overrightarrow{CM}$ or $\mathbf{a} + \frac{1}{2}$ (" $-\mathbf{a} + \mathbf{b}$ ") where " $-\mathbf{a} + \mathbf{b}$ " is ft their expression for \overrightarrow{CD} or $2 \times \overrightarrow{MD}$
		A1	For stating k as 0.5, and supported by a vector method

23

Answers to Qn 9 (AO3): 11% of students got this right


Paper 1MA1: 3H			
Question	Working	Answer	Notes
20		$\frac{1}{4}$	P1 starts process eg $\overrightarrow{AB} = 2\mathbf{b} - 2\mathbf{a}$ P1 process to find \overrightarrow{AP} or \overrightarrow{BP} P1 complete process to find \overrightarrow{OP} A1 for $\frac{1}{4}$ oe
			4

Answers to Qn 10 (AO3): (No Calc) 8% of students got this right

Question 19 (Total 3 marks)

Part	Working an or answer examiner might expect to see	Mark	Notes
	$\overline{OX} = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c}$	P1	This mark is given for the first step to solve the problem
	$\overline{OD} = \overline{OX} + \overline{XD} = \frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} + 3\mathbf{c} - \frac{1}{2}\mathbf{a}$	P1	This mark is given for a process to find a vector expression for \overline{CD}
	$\overline{CD} = \overline{OD} - \overline{OC} = 3.5\mathbf{c} - \mathbf{c} = 2.5\mathbf{c}$		
	\overline{OC} : $\overline{CD} = k$: 1 = \mathbf{c} + 2.5 \mathbf{c}	P1	This mark is given for a process to find the value of k (using ratios)
	$k = \frac{1}{2.5} = \frac{2}{5}$	A1	This mark is given for the correct answer only

Answers to Qn 11 (AO2): 8% of students got this right

Answer

Answers to Qn 12 (AO3): 7% of students got this right

O A Z X Y B

OAB is a triangle. A is the midpoint of OZY is the midpoint of ABX is a point on OB

21

 $\overrightarrow{OA} = \mathbf{a}$ $\overrightarrow{OX} = 2\mathbf{b}$ $\overrightarrow{XB} = \mathbf{b}$

Prove that XYZ is a straight line.

 $\overrightarrow{XZ} = 2\mathbf{a} - 2\mathbf{b} = 2(\mathbf{a} - \mathbf{b})$

$$BA = a - 3b$$

$$\overrightarrow{XY} = b + \frac{1}{2}(a - 3b) = \frac{1}{2}a + b - \frac{3}{2}b = \frac{1}{2}a - \frac{1}{2}b = \frac{1}{2}(a - b)$$

Since \overrightarrow{XY} and \overrightarrow{XZ} both contain (a - b) they are parallel and so XYZ is a straight line.

(Total for Question 21 is 5 marks)

Answers to Qn 13 (AO3): 7% of students got this right

•			8 8
	Proof	5	M1for finding one other vector expressed as a and/or b
			M1 for method to find one of \overrightarrow{CM} , \overrightarrow{MF} or \overrightarrow{CF}
			eg \overrightarrow{CM} = - a + $\frac{1}{2}(3\mathbf{a} + \mathbf{b})$ oe, $\overrightarrow{MF} = \frac{1}{2}(3\mathbf{a} + \mathbf{b}) + \mathbf{b}$ oe
			or $\overrightarrow{CF} = 2\mathbf{a} + 2\mathbf{b}$ oe
			M1 for method to find two of \overrightarrow{CM} , \overrightarrow{MF} or \overrightarrow{CF}
			A1 for two of $\overrightarrow{CM} = \frac{1}{2} (\mathbf{b} + \mathbf{a}), \overrightarrow{MF} = 1.5(\mathbf{b} + \mathbf{a}), \overrightarrow{CF} = 2(\mathbf{b} + \mathbf{a})$ ie
			simplified but oe
			C1 (dep on working shown) for conclusion relating to correct working
		Proof	Proof 5